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N. J. KALTON (*)

The Existence of Primitives for Continuous Functions
in a Quasi-Banach Space (**).

Abstract. - We show that if X is a quasi-Banach space with trivial dual then
every continuous function f: [0, 11— X has a primitive, answering a ques-
tion of M.M. Popov.

Let X be a quasi-Banach space and let f: [0, 1] — X be a continuous
function. We say that f has a primitive if there is a differentiable func-
tion F: [0, 11— X so that F'(t) = f(t) for 0 <t < 1. M. M. Popov has
asked where every continuous function f: [0, 11— L, where 0 <p <1
has a primitive; more generally, he asks the same question for any
space with trivial dual[4]. We show here that the answer to this ques-
tion is positive. We remark that by an old result of Mazur and Or-
licz[3],[6], every continuous f is Riemann-integrable if and only if X is
a Banach space.

Let us suppose for convenience that X is p-normed where 0 < p < 1,
and let 7 =[0, 1]. Let C(I; X) be the usual quasi-Banach space of con-
tinuous functions f: I — X with the quasi-norm | fl|.. = Dax If@®). We
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also introduce the space C*(I: X) of all functions fe C(I; X) which are
differentiable at each ¢ and such that the function g: I> — X is continu-
ous where g(t,t) =f'(t) for 0 <{<1 and
_f®) —f)

s—1t
when s = t. It is easily verified that C*(I; X) is a quasi-Banach space
under the quasi-norm

9(s, t)

I7@) = fs)
Il = IFo) + sup TR
0ss<tsl §
Let C(I; X) be the closed subspace of C*(I; X) of all f such that f(0) =
= (. We consider the map D: C} (I; X) — C(I; X) given by Df = f'. The
following result is proved in[1].

THEOREM 1. If X has trivial dual then for every x € X there exists
fe CE; X) such that Df =0 and f(1) = x.

From this we deduce the answer to the question of Popov.

THEOREM 2. If X has trivial dual then the map D: Ci(I; X) —
— C(I; X) 1is surjective. In particular every continuous f: I — X has a
primitive.

Proor. From Theorem 1 and the Open Mapping Theorem we de-
duce the existence of a constant M =1 so that if v € X there exists
feCi; X) so that Df =0, f(1) =2 and | fllc < Mla].

Now suppose g € C(I; X) with ||g||l. < 1. For any £ > 0 we show the
existence of fe Cl(I; X) with |Df — gll. <& and ||fllc: < 47 M. Once
this is achieved the Theorem follows again from a well-known variant
of the Open Mapping Theorem.

Since g is uniformly continuous, there is a piecewise linear function
h so that |lg — hll. <& and ||bf|l. < 1. Since % has finite-dimensional
range there exists H e C} (I; X) with DH = h. Now let » be a natural
number, and let 2, = H(k/n) — H((k — 1)/n). For k=1, 2, ..., n define
fo.n€ Co(I; X) s0 that Df =0, || fi, »llcg < Mlwy || and f, (1) = &, Then
we define F, e Cg(I; X) by

F,@t)=H(t) - H(—’i;—l) — fin(nt —k + 1)

for (k — 1)/n < t < k/n. Clearly DF,, = DH = h. It remains to estimate
1 lcs-
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Let

|H(t) — H(s)|
tosi<e  |t—s|

n(e) =

It is easy to see that lim 7(¢) = [|b]l.. < 1. Now suppose (k —1)/n <
< s <ts<k/n for some I<k<mn. Then

p i/p
I - Fyol < (0 (1) + 0#lalle) "= 9 <

A

1/
(1) + drelale) " =9 < a7 4 1700 (L)t .

Since F,(k/n)=0 for 0<k<n we obtain that for any 0<s<t<l,
IF. (8) = Fo(s)]| < 247 (MP + 1)y (%)mm (t ~ s, %).

By taking n large enough we have |[F, |l < 4'/? M. Thus the theo-
rem follows. |

We close with a few remarks on the general problem of classifying
those quasi-Banach spaces X so that the map D: Cj (I; X) — C(I; X) is
surjective; let us say that such a space is a D-space. The following facts
are clear:

PROPOSITION 8. (1) Any quotient of a D-space is a D-space.
(2) If X and Y are D-spaces then X @Y s a D-space.

ProOF. (1) Let E be a closed subspace of X and let #: X — X/E be
the quotient map. Let z: C(I: X) — C(I; X/E) be the induced map 7if =
= fo . We start with the observation that 7 is surjective. If g € C(I; X/E)
with |lg]|.. < 1 then we can find fe C(I; X) with ||f}.. <27~ and |7f -
— 9]l < 1. To do this suppose N is an integer and let fiy be a function
which is linear on each interval [(k — 1)/N, k/N] for 1<k <N and
such that afy(k/N) = g(k/N) with ||fy(k/N)| <1 for 0 <k < N. For
large enough N we have |lg — #fy|l. <1 and our claim is substantiat-
ed.

Now if X is a D-space and g € C(I; X/E) then there exists fe C(I; X)
with 7if=g. Let F e C}(I; X) with DF = f. Then if G = 7F we have
DG =g.

(2) Is trivial. |




116 N. J. KALTON [4]

In[1] the notion of the core is defined: if X is a quasi-Banach space
then core X is the maximal subspace with trivial dual.

THEOREM 4. If core X = {0} then X is a D-space if and only if X is
a Banach space (i.e. is locally converx).

PrOOF. Suppose core X = {0} and X is a D-space. Suppose DF =0
where FeCl(I; X). Let Y be the closed subspace generated by
{F(s):0 < s <1}. We show Y = {0}; if not there exists a nontrivial
continuous linear functional y* on Y. Then D(y*oF)=0 so that
y*(F(s)) = 0 for 0 < s < 1. But then y* = 0 on Y. We conclude that ¥ =
= {0} and so F = 0. Hence D is one-one and surjective and by the Closed
Graph Theorem D is an isomorphism.

Let M be a constant so that |DF||, <1 implies |[Fllcx <M for
F e C}(I; X). Let ¢ be any C “-real function on R with ¢(¢) = 0 for ¢ < 0
and ¢(t)=1 for t=1. Let K= max, |¢’'(t)]. For any N and any

%y, ..., &y € X with max |z, | < 1, we define F(t) = 2 PNt —k + 1) .
Then F e C}(I; X) and |DF||,, < NK. Hence |[F(1)H < NMK, ie.

s MK.

l (@ + ... +y)
This implies X is locally convex. n

Combining Proposition 8 and Theorem 4 gives that if X is a D-space
then X/core X is a Banach space. It is, however, possible to construct an
example to show that the converse to this statement is false, and there
does not seem, therefore to be any nice classification of D-spaces in

general.
To construct the example we observe the following theorem. First

for any quasi-Banach space X let ay(X) = sup{|le; + ... + ax|: [l:]| <
< 1} (so that ay(X) = N).

THEOREM 5. Suppose X is a D-space; then for some constant C we
have ay(X) < Cay(core X).

ProoF. Let by = ay(core X). Sulgpose %, ..., oy € X with |la;]| < 1
and define as in Theorem 4, F(t) = E ¢(Nt — k + 1) . Then |DF]|,, <
< NK and so by the Open Mappmg Theorem, for some constant M =
= M(X), there exists G € C}(I; X) with DG = DF and |G|c: < MNK.

Then ||G(k/N) — G((k — 1)/N)|| < MK for 1<k <N.
Let H(t) = F(t) — G(t). Since DH =0 and X/core X is a Banach space
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H has range in core X. Now for 1<k <N, H(k/N) - H(k —1)/N) =
=, — (G(k/N) — G((k — 1)/N)) so that [[H(k/N)— H((k —1)/N))| <
< (MPK? + 1)!/7. Hence if CP = MPK? + 1, we have |H(1)| < Cby or
ey + ... + 2, || < Cb,.

To construct our example we start with the Ribe space Z ([2],[5])
which is a space with a one-dimensional subspace L so that Z/L is iso-
morphic to ;. A routine calculation shows ay(Z) = cNlog N for some
¢ > 0. Then let Y be any quasi-Banach space with trivial dual so that
ay(Y) = O(NlogN) (for example a Lorentz space L(1,p) where
1<p< o). Let j: L —Y be an isometry and let X be the quotient of
Y X Z by the subspace of all (jz, 2) for z e L. Then Z embeds into X so
that a, (X) = cNlog N but core X ~ Y so that X cannot be a D-space.
However X/core X is isomorphic to Z/L which is a Banach space.
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