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L P-maximal regularity on Banach spaces with a Schauder basis

By

N. J. KALTON and G. LANCIEN

Abstract. We investigate the problem of LP-maximal regularity on Banach spaces
having a Schauder basis. Our results improve those of a recent paper.\We also address
the question of L"-regularity in LS spaces.

1. Introduction. We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [2], [4], [8] or [7].
We consider the following Cauchy problem:

u@) +Bu®) = ft) for0=t<T
u0 =0

where T € (0, +00), —B is the infinitesimal generator of a bounded analytic semigroup on
acomplex Banach space X anduand f are X-valued functions on [0, T). Suppose 1 < p < oc.
B is said to satisfy LP—maximal regularity if whenever f € LP([0, T); X) then the solution

t
u) = [e98f(gds
0

satisfies u’ € LP([0, T); X). Itis known that B has L P-maximal regularity forsome 1 < p < oo
if and only if it has LP-maximal regularity for every 1 < p < oo [3], [4], [14]. We thus say
simply that B satisfies maximal regularity (MR).

As in [7], we define:

Definition 1.1. A complex Banach space X has the maximal regularity property (MRP)
if B satisfies (MR) whenever —B is the generator of a bounded analytic semigroup.

Let us recall that De Simon [3] proved that any Hilbert space has (MRP), and that the
question whether L9 for 1 < q # 2 < oo has (MRP) remained open until recently. Indeed,
in [7] itis shown thata Banach space with an unconditional basis (or more generally a separable
Banach lattice) has (MRP) if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assumptions and study the
(MRP) on Banach spaces with a finite-dimensional Schauder decomposition. In particular,
we show that a UMD Banach space with an (FDD) and satisfying (MRP) must be isomorphic
to an ¢, sum of finite dimensional spaces.
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In the last section we consider the question of whether the solution u of our Cauchy problem
satisfies u’ € L2([0, T; L") if f e L2([0, T); L®).

This work was done during a visit of the second author to the Department of Mathematics
of the University of Missouri in Columbia in fall 1999; he would like to thank the Department
for its warm hospitality.

2. Notation and background. We will follow the notation of [7]. Let us now introduce
more precisely a few notions.

If F is a subset of the Banach space X, we denote by [F] the closed linear span of F. We
denote by (sx)2, the standard sequence of Rademacher functions on [0, 1] and by (hy)g2, the
standard Haar functions on [0, 1] (for convenience we index from 0).

Let 1 = p < oo. A Banach space X has type p if there is a constant C > 0 such that for
every finite sequence (x )X, in X:

1

1 K % K P
(f Y ek®xll? dt) =C (Z ||Xk||p) .
0 k=1 k=1

Notice that every Banach space is of type 1. A Banach space X is called (UMD) if martingale
difference sequences in L,([0, 1]; X) are unconditional i.e. there is a constant K so that for
every martingale difference sequence (f,)N_, we have

N N
I 8k el = KIS fill,oo
k=t k=t

if sup |8 = 1.

k=N

Let (En)n=1 be a sequence of closed subspaces of X. Assume that (E;)n=1 is a Schauder
decomposition of X and let (P,)n=1 be the associated sequence of projections from X onto E,,.

For convenience we will also denote this Schauder decomposition by (E,,, Py)n=1. The decom-
n
position constant is defined by sup || Y~ Px|l; this is necessarily finite. If each (E;) is finite-

n k=1
dimensional we refer to (E,) as an (FDD) (finite-dimensional decomposition); an uncondi-
tional (FDD) is abbreviated to (UFDD).
If (En)nz1 is a Schauder decomposition of X and (un)}\., is a finite or infinite sequence (i.e.
r
N = oo) of the form u, = Zn Xe Where xy e Exand 1l =rqg<r; <...<rp<..., then
k=rp_1+1
(un)n=1 is called a block basic sequence of the decomposition (E).
We denote by »=* the set of all finite sequences of positive integers, including the empty

sequence denoted @. Fora = (ay, ... , an) € ®=*, |al = n is the length of a (|¢| = 0). Fora =
(ag, ..., a) (respectively a = @), we denote (a, n) = (ay, . .. , &, ) (respectively (a, n) = (n)).
A subset g of w=* is a branch of =" if there exists (on)s2, € Nsuchthat 8 = {(o1, ..., on);

n = 1}. In this paper, for a Banach space X, we call a tree in X any family (Ya)aco<e C X.
A tree (Ya)aco<w 1S Weakly null if for any a € =%, (Yan))nz1 is a weakly null sequence.

Let (Ya)acw<e be a tree in the Banach space X. Let T C w=?, (Ya)act IS @ full subtree of
(Ya)aco<e If @ € T and for all a € T, there are infinitely many n € N such that (a,n) € T.
Notice that if (va)aer is a full subtree of a weakly null tree (V) aco<, then it can be reindexed
as a weakly null tree (za) aco<e-
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We now state a result of [7] that will be an essential tool for this paper:

Theorem 2.1. Let (E,, P,)n=1 be a Schauder decomposition of the Banach space X. Let
Z,=PrX*and Z = [U2, Z,]. Assume X has (MRP). Then thereisa constant C > 0 so that
whenever (u,))\; are such that u, € [Ean_1, Ezn] @nd (ui)Y_, are such that u}; € [Zan_1, Zon]
then

1 1
2 N . dt 2 2 N . dt 2
Paud2"t2—) =cC u, @22 —
(F1 2 Pavne 5 ) = ¢ (F1 2w
and

1 1
2 N . dt 2 2 N . dt 2
px u*e|2”t 2 =C u*e|2”t 2
(5 remig) = (f1 5wy

We observe that, by a well-known result of Pisier [12] these inequalities can be replaced
by equivalent inequalities (with a modified constant) using & in place of g2,

N N

(2.1) I 2° PantnenliL,oo = Cll 22 Unénllyoo
n=1 n=1

and
N N

(2.2) I 2° PanUienliL,on = Cll Y- Uhenllyocs-
n=1 n=1

We refer the reader to [15] for further recent developments in this area.

3. Themain results. We begin with a general result on spaces with a Schauder decompos-
ition:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder decomposition
(En);. If X has (MRP), then thereis a constant C > 0 so that for any block basic sequence
(uhL, with respect to the decomposition (E,):

N 1 N N
(3.1) EX MU= S Y ebulPdt = C Y flu®.
k=1 = k=1

Proof. If the result is false we can clearly inductively construct an infinite normalized
block basic sequence (un); so that there is no constant C so that for all finitely nonzero
sequences (a2, We have:

N 1 N N
(3.2) Yy jal? = [ Y aeddud?dt = C Y la
k=1 0 k=1 k=1

It therefore suffices to show that (3.2) holds for every normalized block basic sequence
(un)2,. We can clearly then suppose u, € En.

We next use a theorem of Figiel and Tomczak-Jaegermann [5] combined with [13] (see
also [10] p. 112) that, since X has nontrivial type for every n € N there exists ¢(n) € N so
that any subspace F of X with dimension ¢(n) has a subspace H of dimension n which is
2-complemented in X and 2-isomorphic to ¢5.



400 N. J. KALTON and G. LANCIEN ARCH. MATH.

Assume (3.2) is false. Then we can inductively find a sequence (a,),=1 and an increasing
sequence (rp)n=p Withrg =0so thatro, > ron_1 + @(ron_1 — ran_z) forn = 1,

oan4+1 )
>olar=1
I’2n+1

and either
1 2n+1

[ ae®ugldt > 2"

0 k=rpp+1
or
1 2n+1

S Y ae®ugl®dt <27,
0 k=ron+1
In order to create new Schauder decompositions of X, we will need the following elementary
lemma, that we state without a proof:

Lemma 3.2. Let (En)n=1 be a Schauder decomposition of a Banach space X. Assume that
each E, hasa finite Schauder decomposition (F, ), with a uniform bound on the decompos-
ition constant. Then (Fy1, ..., Fim, Fo1. ..., Fom,. ...) iSalso a Schauder decomposition
of X.

[ee] m
We denote the induced decomposition by > @(Zn @ Fn). Now by assumption E,, ;41 +
n=1 k=1

-+ E,, Which has dimension at least ¢(rz, —ray-1) contains a subspace H, which is
2-Hilbertian and 2-complemented in X. Let G, be the complement of H, in E;, .1+
-+ E,, by the projection of norm 2. At the same time [u,] is 1-complemented (by the
Hahn-Banach theorem) in Ey forr,,_; + 1 = k = r,, and let Fy be its associated complement.
We thus have a new Schauder decomposition:

(Fu, [ual, Fo, [Ua], - oo, Ry [Un 1, Hi, Ga, By, [Unpaads s (U Ha, Ga, o).
If we write D, = F, 41 +---+ F,, ; + Gy then we have a Schauder decomposition

0 fon—1
Y ®&DhdH® Y Plud).
n=1 k=ron_p+1

Next select a normalized basis (z;k)LZ:”r;rlH+1 of H, which is 2-equivalent to the canonical basis

of Erf”*rzr‘*l. Itis easy to see that we can obtain a new Schauder decomposition by interlacing
the (vy) with the (uy) i.e.:

(3.3 Z (Dn @[Ur2n72+1] @[Ur2n72+1] @... @[Uan,l] @[Uan,l])-
n=1

Now again using Lemma 3.2 we can form two further decompositions:

(34) Z (Dn @[ur2n72+1 + Ur2n72+1] @[Uan,zﬁ—l] 69 e @[UFZn,l + Uan,l] @[UFZn,l])v
n=1

and

(35) Z (Dn @[uan,zﬁ—l + Ur2n72+1] @[ur2n72+1] ... @[uan,l + Uan,l] @[Uan,l])~
n=1
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Now we can apply Theorem 2.1. If we use decomposition (3.4) we note that u, = (uy + vy) — vk
and so for a suitable C and all n,

"2n "2n—1
I > &k +vdeli, =ClI Y aUkexlliL,xo-
k=ron_p+1 k=ron_o+1

However, using decomposition (3.3) there is also a constant C’ so that

2n

2n
I > awedl, =C1 Y a(Uk + vderdlLyx-
k=ron_p+1 k=ron_p+1

This leads to an estimate:

1
Tan-1 , 2 Tan-1
> lad =Gl Y aWekllL-

k=ron_o+1 k=ron_o+1

If we use decomposition (3.5) instead we obtain an estimate:
1

fon-1 ke fan-1 ) 2
I > awe®L,x = C, > lad .

k=ron_p+1 k=ron_o+1
Combining gives us (3.2) and completes the proof. O

Let us first use this result to give a mild improvement of a result from [7]:

Theorem 3.3. Let X be a reflexive space with an (FDD) and with non-trivial type which
embeds into a space Y with a (UFDD). If X has (MRP) then X is isomorphic to an ¢,—sum

of finite-dimensional spaces (Y~ & Ep)y,.

n=1

Proof. Using Proposition 1.g.4 of [9] (cf. [6]) we can block the given (FDD) to produce
an (FDD) (E,) so that (Ezn)52, and (Ezn-1)32, are both (UFDD)’s. Let us denote, as in
Theorem 2.1, the dual (FDD) of X* by (Z,)%2,. Now it follows applying Theorem 3.1 to both
Xand X* (which also has (MRP)) that there exists a constant C so that if x, € E, and x; € Z,
are two finitely nonzero sequences

> Xajll = CX %ok ll*) 2
b} P}

[o¢] o0 1
I3 %51l = CC %5192
k=1 k=1
for j =0, 1. Hence
o0 o0 1
I Xl = 2C(CX Ixl1?)2
k=1 k=1

oo oo 1
I3 %l = 2CC0 II%11»)2.
k=1 k=1
Now for given x, we may find y; € X* with |lyill = x|l and y (%) = Il Let xi = Pfy;

(where P : X — Ey is the projection associated with the FDD (E,)). Then ||l = Cq /Xl
where C; = sup || P,|| < oo. Hence if (x)g2, is finitely nonzero, we have
n

00 00 1
I3 %l = 2CCi(Y Ixl®) 2.
k=1 k=1

Archiv der Mathematik 78 26
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Thus
oIl = X (%0
k=1 k=1

= (X %)
k=1

k=1
o0 1 [o¢]
= 2CCL( %12 3 Xl
k=1 k=1
so that we obtain the lower estimate:
o0 1 o0
(X %) Z = 2CCyl Y- Xill-
k=1 k=1
This completes the proof. O
We next give another application to (UMD)-spaces with (MRP).

Theorem 3.4. Let X be a (UMD) Banach space with an (FDD) satisfying (MRP). Then X
isisomorphic to an £,-sum of finite dimensional spaces, () @ Ey)y,.

n=1
Proof. Let (Ep) be the given (FDD) of X. We will show first that there is a blocking (F,)
of (E,) which satisfies an upper 2—estimate i.e. if there is a constant A so that if (x,) is block
basic with respect to (F,) and finitely non-zero then

(3.6) niwéNiwwﬁ

Once this is done, the proof can be completed easily. Indeed if (Z,) is the dual decomposition
to (F,) for X* then we can apply the fact that X* also has (MRP) (X is reflexive) to block
(Z,) to obtain a decomposition which also has an upper 2-estimate. Thus we can assume (F,)
and (Z,) both have an upper 2-estimate and then repeat the argument used in Theorem 3.3 to

deduce that X = (i @ Fn)e,-
—1

n=

Since X necessarily has type p > 1, we can apply Theorem 3.1 and assume (E,) obeys
(3.2).

We now introduce a particular type of tree in the space L,([0,1); X). Let &, forn = 0 be
the sub-algebra of the Borel sets of [0, 1) generated by the dyadic intervals [(k — 1)27", k2™")
for 1 = k = 2". Let E, denote the conditional expectation operator E, f = E(f|Z,).

We will say that a tree (f,)aco<e IS @ martingale difference tree or (MDT) if

e each f, is %, — measurable,
o if |a.| > 0 then ]E\a\—l fa = 0,
o there exists N so that if |a] > N then f, = 0.
In such a tree the partial sums along any branch form a dyadic martingale which is eventually

constant.
We will prove the following lemma:

Lemma 3.5. There is a constant K so that if (f3)ac,<e is a weakly null (MDT), there is
afull subtree (f,)acr SO that for any branch g we have:

1
I3 fallipoo = KCZ N fallfx) 2 -
aef aef
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Proof. For each a we define integers m_(a) and m_,(a). If f, # 0 we set m_(a) to be the
greatest m so that

m
> Pofalli,oo = 2787 fall o0
k=1
and m, (a) to be the least m > m_(a) so that

I Pefall,oo = 2787 fallyx-
k=m+1
If f; =0wesetm_(¥) =0and m, (%) = 1; if f, = 0 where a # @ we set m_(a) to be the last
member of aand m,(a) = m_(a) + 1.

Since (f,) is weakly null we have lim m_(a, n) = oo for every a. It is then easy to pick
n—o0
my (a)
a full subtree T so that m_(a, n) > m,(a) whenever a, (a,n) e T. Now letg, = Y  fa.
k=m_(a)+1

Then [ fa — GallL,o0 = 27 fallL,o-
For any branch g of T, we have that g,(t) is a block basic sequence with respect to (E,) for
every0 =t < 1. Hence

1
2

1
1 2
(f l X[;fa(s)ga(t)”idS) =C (X;S IIQa(t)Ili)
0 ae ae

Integrating again we have

1 1
1 2 2
(,{{‘ ” Z Ga(s)ga”ZLz(x)dS) =C (gﬁ ”ga”ZLz(x)) .

acp
From this we get

1
2

1
1 2
1Y €a®fall? ,08) =2C( X l1fallf 0 ) + X 27 fall.
0 aep aef aef

Estimating the last term by the Cauchy-Schwarz inequality and using the fact that X is (UMD)
we get the lemma. 0O

Now we introduce a functional @ on X by defining @(x) to be the infimum of all » > 0 so
that for every weakly null (MDT) (fa)aco<e With fs = Xx(0.1) We have a full subtree T so that
for any branch g

37) 1Y fal? o0 = 2+ 2K2 Y [ fall? -
acp aeﬁ
a#

Note that since
> fa||2|_2(x) =212+ 11 Y fa||2|_2(x))
aep acp
a#y
we have an estimate ®(x) = 2||x||2. By considering the null tree we have F(x) = [x||?. It
is clear that @ is continuous and 2-homogeneous. Most importantly we observe that @ is

26*
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convex; the proof of this is quite elementary and we omit it. It follows that we can define an
equivalent norm by |[|x|||> = ®(x) and ||x|| = |||x]]| = 2|x]|| for x € X.
Next we prove that if x € X and (y;) is a weakly null sequence then

(3.8) lim sup(/11X + YallI* + 111X = Yall?) = 21[x]1[* + 4K lim sup [lya .
n—o00 n—o00

We first note that we can suppose lim |||x & y,||| and lim |y,|/? all exist. Now suppose € > 0.
n—oo n—oo

Then we can find weakly null (MDT)’s (f)aco<e With f] = x4+ y, so that for every full
subtree T we have a branch g on which;

(3.9) Il E : f;”ZLz(x) +e>|[|x+ yn|||2 + 2K? E I f;?”ZLz(x)-
acp ae[;]
ar

In fact by easy induction we can pick a full subtree so that (3.9) holds for every branch. Hence
we suppose the original tree satisfies (3.9) for every branch.

Similarly we may find weakly null (MDT)’s (g})aco<e With gj = X — Yy, and for every
branch g,

Il Z gg||2|_2(x) +e>|IX— yn|||2 +2K? Z ||gg||2|_2(x)-
o b
We next consider the (MDT) defined by h; = X,
Yo ifO=t<1

—yn if %§t<1

h(n)(t) = [

and if |a] > 1then

fret—1) ifost<?i
h(a,n)(t) = i( ) _— 2
ga(2t) if 5=t<Ll

Now for every branch of the (MDT) (h,)ac.<» With initial element {n} we have
> hallfz<x) +e> %(II|X+ Yalll? 4+ 111X = Yol 1) + 2K2 3~ ||ha||2|_2(x)-
aep aep
la|>1

However, from the definition of @(x) = [||x]||? it follows that there exists n, so that if n = ng
we can find a branch g whose initial element is n and such that

> ha||2|_2(x) < [IIXI[? +2K? 3 ”ha”ZLZ(X) te
aep acp
la|>0
Combining gives the equation (for n = ny),

FAIX A+ Yall? + 111X = Yal 1) = X117 4 2K2[lyn]l* + 2e.

This proves (3.8). But note that if y, is weakly null we have IirEn inf|||X — yalll = [IIX|]| and
so we deduce:

limsup 11X + Yall* = [IXII* + 4K limsup ||y, 1*.

n—o0
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Using this equation it is now easy to block the Schauder decomposition (E,) to produce
a Schauder decomposition (F,) with the property that for any N if x e F; +--- + Fy and

ye i Fi then

k=N+2

1
X+ YIS @+ 8w IXIE + 4K [ylIP)2,

where 8y > 0 are chosen to be decreasing and so that ]'[ (14 8n) = 2. Next suppose (Xy)
is any finitely non-zero block basic sequence with respect to (Fn). By an easy induction we
obtain for j =0, 1:
n n—-1 n 1
Y Xk l1] = 4K2 [T+ 8ok ) (X X 11172
k=1 k=1 k=1
Hence
n n 1
3" Xull = 32K2(Y (1% 2.
k=1 k=1
This establishes (3.6) and as shown earlier this suffices to complete the proof. O

Remark. Recently Odell and Schlumprecht [11] showed that a separable Banach space
X can be embedded in an ¢,—sum of finite-dimensional spaces for 1 < p < oo if and only if
X is reflexive and every normalized weakly null tree has a branch which is equivalent to the
usual ¢,—basis. This result is closely related to the proof of the previous theorem.
4. On L"-regularity in LS spaces. Lets € [1, co). We consider our usual Cauchy problem:
U+ Bu®) = ft) for0=t<T
u0) =0

where T € (0, +00), —B is the infinitesimal generator of a bounded analytic semigroup on
LS = L%([0,1]) and f e L?([0, T); LS). Then we ask the following question: for what values
of sandr in [1, oo) does the solution

ut) = fe =98 f(g) ds

necessarily satisfies u’ € LP([0, T); L")? Thus we introduce the following definition:

Definition 4.1. Letr and sin [1, o0). We say that (r, s) is a regularity pair if whenever
—B is the infinitesimal generator of a bounded analytic semigroup on L® = L5([0, 1]) and
f e L2([0, T); L®), the solution u of

U+ Bu®) = ft) for0=t<T
u0) =0
satisfies u’ € LP([0, T); L").

Notice that it follows from previous results ([3], [8] and [7]) that (s, s) is a regularity pair
if and only if s = 2. This is extended by our next result:

Theorem 4.2. Letr andsin[1, co). Then (r, s) isaregularity pair ifand only ifr = s= 2.

Proof. It follows clearly from the work of De Simon [3], that if r = s =2 then (r, s) is
a regularity pair.
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So let now (r, s) be a regularity pair. Since L* does not have (MRP) ([8]), we have that s > 1.
Then, solving our Cauchy problem with B = 0, we obtain that r = s. Thus we can limit
ourselvestothecases> land1=r = s.

Then by the closed graph Theorem, for any B so that —B is the infinitesimal generator of
a bounded analytic semigroup on L® = L5([0, 1]), there is a constant C > 0 such that for any
f € L2([0, T); LS):

||u,|||_2(|_3) =C|f ”LZ(LS)'

Using the inclusion LS c L" forr = s, we can now state the following analogue of Theo-
rem 2.1

Proposition 4.3. Let (E,, P,)n=1 be a Schauder decomposition of L. Assume that (r, s)
is a regularity pair. Then there is a constant C > 0 so that whenever (u,))_, are such that
Un € [E2n_1, Eznl then

N N
I Z PZnUn€n|||_2(|_f) =Cj Z Un€n||L2(LS)'
n=1 n=1

Then our first step will be to show that the Haar system satisfies some lower-2 estimates in
Ls in the following sense:

Lemma4.4. If there existsr = s such that (r, s) is a regularity pair, and if s< p < 2 or
p = 2 then there is a constant C > 0 such that for any normalized block basic sequence
(v1, ... ,vy) Of (hy) and for any a, ... ,a,inC:

n n l
'Y awkllies = C lawP)P.
k=1 k=1

Proof. We first observe that if 1 < p < 2, it follows from the work of J. Bretagnolle,
D. Dacunha-Castelle and J. L. Krivine [1] on p-stable random variables that there is a sequence
(en)nz1 in L* which is equivalent to the canonical basis of ¢, in any L% for 1 = q < p. Thus
(ey) is weakly null in LS, and by a gliding hump argument, we may assume that (e,) is actually
a block basic sequence with respect to the Haar basis. If p = 2 then the Rademacher functions
already form a block basic sequence in every L9 for 1 = q < oo.

Now assume the lemma is false. We pick a normalized block basic sequence (vs, ... , vn))
of (hy) and &, ... , &, in C so that

Ny Ny 1
1> awlies = (O la PP =1.
k=1 k=1

Then pick m; € Nsuch that (vy, ... , vn,, €n,) is a block basic sequence of (hy). By induction,
we pick a normalized block basic sequence (Vnj+1 -+ 5 Unjyy) of (hy), Bnj+1s -+ 8nj g inC
and mj;; € Nso that (vy, ..., Un, 8mys Ungsts - - - » Unjyqs Emjyy) is a block basic sequence of
(hy) and

Nj+1 Nj+1

1
Y awdis = (X &P P = .
kenj 1

k:nj+l =nj+
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Sowe can find (I)k=1 and (J k=1 two sequences of finite intervals of Nsuch that {1, J: k= 1}
is a partition of Nand forallk = 1, v € [hj, j € I ] and ey, € [hj, j € J]. Then set

Xk:[hji j€|kUJk].

Then (Xy) is an unconditional Schauder decomposition of LS. Each Xy can be decomposed
into Xy = Egx_1 @ Eox, Where Exy = [vk + &m, ], €n, € Ea« and the corresponding projections
are uniformly bounded. So, by Lemma 3.2, (Ey)k=1 is a Schauder decomposition of LS. We can
now make use of Proposition 4.3. If we decompose ay vy = a(vk + €m,) — 8&m, IN Ex_1 @ Eay,
we obtain that there is a constant C > 0 such that forall n = 1:

n n 1
I kZ Akl 2s) = C(kZ la[P)P.
=1 =1

Since (vy) is an unconditional basic sequence in LS, there is a constant K > 0 so that for all
n=1:

n n l
> awdls = KO- ladP)?,
k=1 k=1
which is in contradiction with our construction. [

We now conclude the proof of Theorem 4.2. The Haar basis of L* has a block basic sequence
equivalent to the standard basis of ¢maxs2). Hence Lemma 4.4 shows that max(s, 2) = p
whenevers< p<2orp=2 Thuss=2. 0O
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