APPROXIMATION THEORY:
A Volume Dedicated to Blagovest Sendov

Edited by
B. D. Bojanov
University of Sofia
Sofia, Bulgaria

DARBA SOFIA
GREEDY BASES IN BANACH SPACES

S. J. Dilworth, N. J. Kalton and Denka Kutzarova

In connection with the greedy algorithms, S. Konyagin and V. Temlyakov [KT] introduced the notions of greedy and quasi-greedy bases (see also the survey of V. Temlyakov on nonlinear methods of approximation [T]).

Let \((e_n)\) be a basis of a Banach space \(X\) and \((e_n^*)\) be the biorthogonal sequence in \(X^*\). For any \(x \in X\) denote

\[
\sigma_m(x) = \inf \left\{ \left\| x - \sum_{j \in A} \alpha_j e_j \right\| : |A| = m, \quad \alpha_j \in \mathbb{R} \right\}.
\]

Also, for any \(x\) define the greedy ordering for \(x\) as the map \(\rho : \mathbb{N} \to \mathbb{N}\) such that \(\rho(\mathbb{N}) \supset \{j : e^*_j(x) \neq 0\}\) and so that if \(j < k\) then either \(|e^*_{\rho(j)}(x)| > |e^*_{\rho(k)}(x)|\) or \(|e^*_{\rho(j)}(x)| = |e^*_{\rho(k)}(x)|\) and \(\rho(j) < \rho(k)\). The \(m\)-th greedy approximation is given by

\[
G_m(x) = \sum_{j=1}^{m} e^*_{\rho(j)}(x)e_{\rho(j)}.
\]

The basis is called greedy if there is a constant \(C\) such that for every \(x \in X\) and every integer \(m\),

\[
\|x - G_m(x)\| \leq C\sigma_m(x).
\]
The basis is called quasi-greedy if $G_m(x) \to x$ for all $x \in X$. P. Wojtaszczyk [W] proved that a basis is quasi-greedy if and only if there is a constant C so that for any $x \in X$,

$$
\sup_m \|G_m(x)\| \leq C\|x\|.
$$

In the present note we shall survey further development of the study of greedy-type bases in the recent papers [DKKT], [DKK], [DKW].

Konyagin and Temlyakov obtained a nice characterization of greedy bases as unconditional bases with the additional property of being democratic, i.e. there is a constant C such that for any finite subsets of integers A, B with $|A| \leq |B|$, we have

$$
\left\| \sum_{j \in A} e_j \right\| \leq C \left\| \sum_{j \in B} e_j \right\|.
$$

A similar condition to democracy was defined for Banach lattices in [K].

In [DKKT] we introduce two natural intermediate properties of a basis between greedy and quasi-greedy. We say that (e_n) is almost greedy if for some constant C,

$$
\|x - G_n(x)\| \leq C \inf \left\{ \left\| x - \sum_{j \in A} e_j^*(x)e_j \right\| : |A| = n \right\}, \ x \in X, n \in \mathbb{N}.
$$

The basis is partially greedy if

$$
\|x - G_n(x)\| \leq C \left\| \sum_{k=n+1}^{\infty} e_k^*(x)e_k \right\| \ x \in X, n \in \mathbb{N}.
$$

Theorem [DKKT]. Let (e_n) be a basis of a Banach space. The following are equivalent:

1. (e_n) is almost greedy.
2. (e_n) is quasi-greedy and democratic.
3. For any (respectively, every) $\lambda > 1$ there is a constant $C = C_\lambda$ such that for all $x \in X$ and $m \in \mathbb{N}$, $\|x - G_{[\lambda m]}(x)\| \leq C_\lambda \sigma_m(x)$.

Similarly to the democratic condition, we say that a basis is conservative, if for some constant C, \[\left\| \sum_{j \in A} e_j \right\| \leq C \left\| \sum_{j \in B} e_j \right\| \] whenever $|A| \leq |B|$ and $m < n$ for any $m \in A, n \in B$.

Theorem [DKKT]. A basis is partially greedy if and only if it is quasi-greedy and conservative.

We also study the duality of greedy-type properties of basic sequences.

Theorem [DKKT]. Let (e_n) be a greedy basis of a Banach space X with non-trivial (Rademacher) type. Then (e_n^*) is a greedy basis of X^*.

We give an example of a Tsirelson-like space X which does not have type and X has a greedy basis (e_n) but (e_n^*) is not a greedy basic sequence in X^*.

Wojtaszczyk studied in [W] the existence of quasi-greedy basis in Banach spaces. Note that every unconditional basis is quasi-greedy. It is known that the space $L_1(0, 1)$ does not have an unconditional basis (see e.g. [LT]). Generalizing a result from [W], we have in [DKK] the following corollary.

Theorem [DKK]. The space $L_1(0, 1)$ has a quasi-greedy basis.

In the theory of Banach spaces it is known a complete description of the spaces with unique (up to equivalence) unconditional basis: up to isomorphism these are the spaces ℓ_1, ℓ_2 and c_0 (see [LT]). Examples of conditional quasi-greedy bases were constructed in ℓ_2 [W] and ℓ_1 [DM].

Theorem [DKK]. The only Banach space (up to isomorphism) with unique (up to equivalence) quasi-greedy basis, is c_0.

GREEDY BASES IN BANACH SPACES

It is known that the Haar basis is not quasi-greedy in $L_1(0,1)$. In [DKW] we study subsequences of the Haar system.

Theorem [DKW]. There exists an increasing sequence of integers (n_j) such that the lacunary Haar system $\left((h_j^{n_j})_{j=1}^{2^n} \right)_{i=0}^{\infty}$ in $L_1(0,1)$ is a quasi-greedy basis for its linear span.

REFERENCES

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
E-mail address: dilworth@math.sc.edu

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: nigel@math.missouri.edu

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Current address: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
E-mail address: denka@math.uiuc.edu